Statistical methods for food science : introductory procedures for the food practitioner /

Main Author: Bower, John A.
Format: Book
Language:English
Published: Ames, Iowa : Wiley-Blackwell, 2009.
Subjects:
Table of Contents:
  • 9.1 Quality and nature of instrumental data
  • 9.1.1 Quality of instrumental data
  • 9.2 Sampling and replication
  • 9.3 Experimental design issues
  • 9.4 Statistical analysis of instrumental data
  • 9.4.1 Summary methods
  • Example 9.4-1 Analysis of instrumental data in a processing experiment
  • 9.5 Chemical analysis applications
  • 9.5.1 Accuracy and bias in chemical analysis
  • Example 9.5-1 Bias calculation and display for chemical analysis data
  • 9.5.2 Calibration studies
  • 9.5.3 Precision studies
  • Example 9.5- 2 Precision calculations for chemical analysis data
  • 9.5.4 Uncertainty
  • 9.6 Analysis of relationships
  • References
  • Food Product Formulation
  • Introduction
  • 10.1 Design application in food product development
  • 10.2 Single ingredient effects
  • Example 10.2-1 Display of single ingredient effect in formulation
  • 10.3 Two or more ingredients
  • Example 10.3-1 two ingredient effect in formulation
  • 10.4 Screening of many ingredients
  • Example 10.4-1 Screening experiment in formulation
  • 10.5 Formulation by constraints
  • Example 10.5-1 Linear programming in formulation
  • References
  • Statistical Quality Control
  • Introduction.
  • 11.1 Types of statistical quality control
  • 11.1.1 Types of end determination measure in SQC
  • 11.2 Sampling procedures
  • 11.3 Control charts
  • 11.3.1 The x-bar control chart
  • Example 11.3-1 "x-bar" control chart construction and monitoring
  • 11.3.2 Sampling for control charts
  • 11.3.3 Compliance issues
  • 11.3.4 Other variable control charts
  • 11.3.5 Attribute charts
  • 11.4 Acceptance sampling
  • Example 11.4-1 Construction of an operating characteristic curve for acceptance sampling
  • References
  • Multivariate Applications
  • Introduction
  • 12.1 Multivariate methods and their characteristics
  • 12.2 Multivariate modes
  • 12.2.1 Multiple regression
  • 12.2.2 MANOVA
  • 12.2.3 Principle Component Analysis
  • Example 12.2-1 Principal component analysis on descriptive analysis data
  • 12.2.4 Cluster analysis
  • 12.2.5 Correspondence analysis
  • 12.2.6 Conjoint analysis
  • 12.2.7 Discriminant analysis
  • 12.2.8 Partial least squares regression
  • 12.2.9 Preference mapping
  • Example 12.2-2 Internal preference mapping on hedonic data
  • 12.2.10 Procrustes analysis
  • 12.3 Relationship of consumer preference with sensory measures.