Mathematics of evolution and phylogeny /

Other Authors: Gascuel, Olivier,
Format: Book
Language:English
Published: Oxford ; New York : Oxford University Press, 2005.
Subjects:
Online Access:http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=191256
Table of Contents:
  • 6 Hadamard conjugation: an analytic tool for phylogenetics
  • 6.1 Introduction
  • 6.2 Hadamard conjugation for two sequences
  • 6.2.1 Hadamard matrices-a brief introduction
  • 6.3 Some symmetric models of nucleotide substitution
  • 6.3.1 Kimura's 3-substitution types model
  • 6.3.2 Other symmetric models
  • 6.4 Hadamard conjugation-Neyman model
  • 6.4.1 Neyman model on three sequences
  • 6.4.2 Neyman model on four sequences
  • 6.4.3 Neyman model on n + 1 sequences
  • 6.5 Applications: using the Neyman model
  • 6.5.1 Rate variation
  • 6.5.2 Invertibility
  • 6.5.3 Invariants
  • 6.5.4 Closest tree
  • 6.5.5 Maximum parsimony
  • 6.5.6 Parsimony inconsistency, Felsenstein's example
  • 6.5.7 Parsimony inconsistency, molecular clock
  • 6.5.8 Maximum likelihood under the Neyman model
  • 6.6 Kimura's 3-substitution types model
  • 6.6.1 One edge
  • 6.6.2 K3ST for n + 1 sequences.; 6.7 Other applications and perspectives
  • 7 Phylogenetic networks
  • 7.1 Introduction
  • 7.2 Median networks
  • 7.3 Visual complexity of median networks
  • 7.4 Consensus networks
  • 7.5 Treelikeness
  • 7.6 Deriving phylogenetic networks from distances
  • 7.7 Neighbour-net
  • 7.8 Discussion
  • Acknowledgements
  • 8 Reconstructing the duplication history of tandemly repeated sequences
  • 8.1 Introduction
  • 8.2 Repeated sequences and duplication model
  • 8.2.1 Di.erent categories of repeated sequences
  • 8.2.2 Biological model and assumptions
  • 8.2.3 Duplication events, duplication histories, and duplication trees
  • 8.2.4 The human T-cell receptor Gamma genes
  • 8.2.5 Other data sets, applicability of the model
  • 8.3 Mathematical model and properties
  • 8.3.1 Notation
  • 8.3.2 Root position
  • 8.3.3 Recursive de.nition of rooted and unrooted duplication trees
  • 8.3.4 From phylogenies with ordered leaves to duplication trees.; 8.3.5 Topñdown approach and leftñright properties of rooted duplication trees
  • 8.3.6 Counting duplication histories
  • 8.3.7 Counting simple event duplication trees
  • 8.3.8 Counting (unrestricted) duplication trees
  • 8.4 Inferring duplication trees from sequence data
  • 8.4.1 Preamble
  • 8.4.2 Computational hardness of duplication tree inference
  • 8.4.3 Distance-based inference of simple event duplication trees
  • 8.4.4 A simple parsimony heuristic to infer unrestricted duplication trees
  • 8.4.5 Simple distance-based heuristic to infer unrestricted duplication trees
  • 8.5 Simulation comparison and prospects
  • Acknowledgements
  • 9 Conserved segment statistics and rearrangement inferences in comparative genomics
  • 9.1 Introduction
  • 9.2 Genetic (recombinational) distance
  • 9.3 Gene counts
  • 9.4 The inference problem
  • 9.5 What can we infer from conserved segments?
  • 9.6 Rearrangement algorithms
  • 9.7 Loss of signal
  • 9.8 From gene order to genomic sequence.; 9.8.1 The Pevzner-Tesler approach
  • 9.8.2 The re-use statistic r
  • 9.8.3 Simulating rearrangement inference with a block-size threshold
  • 9.8.4 A model for breakpoint re-use
  • 9.8.5 A measure of noise?
  • 9.9 Between the blocks
  • 9.9.1 Fragments
  • 9.10 Conclusions
  • Acknowledgements
  • 10 The inversion distance problem
  • 10.1 Introduction and biological background
  • 10.2 De.nitions and examples
  • 10.3 Anatomy of a signed permutation
  • 10.3.1 Elementary intervals and cycles
  • 10.3.2 E.ects of an inversion on elementary intervals and cycles
  • 10.3.3 Components
  • 10.3.4 Effects of an inversion on components
  • 10.4 The HannenhalliñPevzner duality theorem
  • 10.4.1 Sorting oriented components
  • 10.4.2 Computing the inversion distance
  • 10.5 Algorithms
  • 10.6 Conclusion
  • Glossary
  • 11 Genome rearrangements with gene families
  • 11.1 Introduction
  • 11.2 The formal representation of the genome
  • 11.3 Genome rearrangement
  • 11.4 Multigene families.; 11.5 Algorithms and models
  • 11.5.1 Exemplar distance
  • 11.5.2 Phylogenetic analysis
  • 11.6 Genome duplication
  • 11.6.1 Formalizing the problem
  • 11.6.2 Methodology
  • 11.6.3 Analysing the yeast genome
  • 11.6.4 An application on a circular genome
  • 11.7 Duplication of chromosomal segments
  • 11.7.1 Formalizing the problem
  • 11.7.2 Recovering an ancestor of a semi-ambiguous genome
  • 11.7.3 Recovering an ancestor of an ambiguous genome
  • 11.7.4 Recovering the ancestral nodes of a species tree
  • 11.8 Conclusion.