|
|
|
|
LEADER |
05503nam a2200313 a 4500 |
001 |
1906553 |
005 |
20171111234743.0 |
008 |
070521s2005 enka ob 001 0 eng d |
020 |
|
|
|a 9780191513732
|q (electronic bk.)
|
020 |
|
|
|a 0191513733
|q (electronic bk.)
|
020 |
|
|
|a 1280846267
|
020 |
|
|
|a 9781280846267
|
040 |
|
|
|a N$T
|b eng
|e pn
|
050 |
|
4 |
|a QH371.3.M37
|b M28 2005eb
|
245 |
0 |
0 |
|a Mathematics of evolution and phylogeny /
|c edited by Olivier Gascuel.
|
260 |
|
|
|a Oxford ;
|b Oxford University Press,
|c 2005.
|a New York :
|
300 |
|
|
|a 1 online resource (xxvi, 416 pages) :
|b illustrations
|
500 |
|
|
|a Includes index.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a 6 Hadamard conjugation: an analytic tool for phylogenetics -- 6.1 Introduction -- 6.2 Hadamard conjugation for two sequences -- 6.2.1 Hadamard matrices-a brief introduction -- 6.3 Some symmetric models of nucleotide substitution -- 6.3.1 Kimura's 3-substitution types model -- 6.3.2 Other symmetric models -- 6.4 Hadamard conjugation-Neyman model -- 6.4.1 Neyman model on three sequences -- 6.4.2 Neyman model on four sequences -- 6.4.3 Neyman model on n + 1 sequences -- 6.5 Applications: using the Neyman model -- 6.5.1 Rate variation -- 6.5.2 Invertibility -- 6.5.3 Invariants -- 6.5.4 Closest tree -- 6.5.5 Maximum parsimony -- 6.5.6 Parsimony inconsistency, Felsenstein's example -- 6.5.7 Parsimony inconsistency, molecular clock -- 6.5.8 Maximum likelihood under the Neyman model -- 6.6 Kimura's 3-substitution types model -- 6.6.1 One edge -- 6.6.2 K3ST for n + 1 sequences.; 6.7 Other applications and perspectives -- 7 Phylogenetic networks -- 7.1 Introduction -- 7.2 Median networks -- 7.3 Visual complexity of median networks -- 7.4 Consensus networks -- 7.5 Treelikeness -- 7.6 Deriving phylogenetic networks from distances -- 7.7 Neighbour-net -- 7.8 Discussion -- Acknowledgements -- 8 Reconstructing the duplication history of tandemly repeated sequences -- 8.1 Introduction -- 8.2 Repeated sequences and duplication model -- 8.2.1 Di.erent categories of repeated sequences -- 8.2.2 Biological model and assumptions -- 8.2.3 Duplication events, duplication histories, and duplication trees -- 8.2.4 The human T-cell receptor Gamma genes -- 8.2.5 Other data sets, applicability of the model -- 8.3 Mathematical model and properties -- 8.3.1 Notation -- 8.3.2 Root position -- 8.3.3 Recursive de.nition of rooted and unrooted duplication trees -- 8.3.4 From phylogenies with ordered leaves to duplication trees.; 8.3.5 Topñdown approach and leftñright properties of rooted duplication trees -- 8.3.6 Counting duplication histories -- 8.3.7 Counting simple event duplication trees -- 8.3.8 Counting (unrestricted) duplication trees -- 8.4 Inferring duplication trees from sequence data -- 8.4.1 Preamble -- 8.4.2 Computational hardness of duplication tree inference -- 8.4.3 Distance-based inference of simple event duplication trees -- 8.4.4 A simple parsimony heuristic to infer unrestricted duplication trees -- 8.4.5 Simple distance-based heuristic to infer unrestricted duplication trees -- 8.5 Simulation comparison and prospects -- Acknowledgements -- 9 Conserved segment statistics and rearrangement inferences in comparative genomics -- 9.1 Introduction -- 9.2 Genetic (recombinational) distance -- 9.3 Gene counts -- 9.4 The inference problem -- 9.5 What can we infer from conserved segments? -- 9.6 Rearrangement algorithms -- 9.7 Loss of signal -- 9.8 From gene order to genomic sequence.; 9.8.1 The Pevzner-Tesler approach -- 9.8.2 The re-use statistic r -- 9.8.3 Simulating rearrangement inference with a block-size threshold -- 9.8.4 A model for breakpoint re-use -- 9.8.5 A measure of noise? -- 9.9 Between the blocks -- 9.9.1 Fragments -- 9.10 Conclusions -- Acknowledgements -- 10 The inversion distance problem -- 10.1 Introduction and biological background -- 10.2 De.nitions and examples -- 10.3 Anatomy of a signed permutation -- 10.3.1 Elementary intervals and cycles -- 10.3.2 E.ects of an inversion on elementary intervals and cycles -- 10.3.3 Components -- 10.3.4 Effects of an inversion on components -- 10.4 The HannenhalliñPevzner duality theorem -- 10.4.1 Sorting oriented components -- 10.4.2 Computing the inversion distance -- 10.5 Algorithms -- 10.6 Conclusion -- Glossary -- 11 Genome rearrangements with gene families -- 11.1 Introduction -- 11.2 The formal representation of the genome -- 11.3 Genome rearrangement -- 11.4 Multigene families.; 11.5 Algorithms and models -- 11.5.1 Exemplar distance -- 11.5.2 Phylogenetic analysis -- 11.6 Genome duplication -- 11.6.1 Formalizing the problem -- 11.6.2 Methodology -- 11.6.3 Analysing the yeast genome -- 11.6.4 An application on a circular genome -- 11.7 Duplication of chromosomal segments -- 11.7.1 Formalizing the problem -- 11.7.2 Recovering an ancestor of a semi-ambiguous genome -- 11.7.3 Recovering an ancestor of an ambiguous genome -- 11.7.4 Recovering the ancestral nodes of a species tree -- 11.8 Conclusion.
|
650 |
|
0 |
|a Evolution (Biology)
|x Mathematics.
|
650 |
|
0 |
|a Phylogeny
|x Mathematics.
|
650 |
|
4 |
|a Evolution (Biology)
|
650 |
|
6 |
|a Évolution (Biologie)
|x Mathématiques.
|
650 |
|
6 |
|a Phylogenèse
|x Mathématiques.
|
650 |
|
7 |
|a SCIENCE
|x Life Sciences
|
700 |
1 |
|
|a Gascuel, Olivier,
|x Biological Diversity.
|
856 |
4 |
0 |
|u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=191256
|
952 |
|
|
|a CY-NiOUC
|b 5a0466c06c5ad14ac1eef6f5
|c 998a
|d 945l
|e -
|t 1
|x m
|z Books
|