Rheology for Chemists An Introduction /

Main Author: Goodwin, J W, Dr.
Other Authors: Hughes, R W, Dr.
Format: Book
Language:English
Published: Cambridge, Royal Society of Chemistry, 2008.
Edition:2nd New ed.
Subjects:
Online Access:http://dx.doi.org/10.1039/9781847558046
Table of Contents:
  • Contents: Chapter 1: Introduction
  • 1.1 Definitions
  • 1.1.1 Stress and Strain
  • 1.1.2 Rate of Strain and Flow
  • 1.2 Simple Constitutive Equations
  • 1.2.1 Linear and Non-linear Behaviour
  • 1.2.2 Using Constitutive Equations
  • 1.3 Dimensionless Groups
  • 1.3.1 The Deborah Number
  • 1.3.2 The Peclet Number
  • 1.3.3 The Reduced Stress
  • 1.3.4 The Taylor Number, NTa
  • 1.3.5 The Reynolds Number, NRe
  • 1.4 Macromolecular and Colloidal Systems
  • 1.5 References
  • Chapter 2: Elasticity: High Deborah Number Measurements
  • 2.1 Introduction
  • 2.2 The Liquid-Solid Transition
  • 2.2.1 Bulk Elasticity
  • 2.2.2 Wave Propagation
  • 2.3 Crystalline Solids At Large Strains
  • 2.3.1 Lattice Defects
  • 2.4 Macromolecular Solids
  • 2.4.1 Polymers - An Introduction
  • 2.4.2 Chain Conformation
  • 2.4.3 Polymer Crystallinity
  • 2.4.4 Crosslinked Elastomers
  • 2.4.5 Self-associating Polymers
  • 2.4.6 Non-interactive Fillers
  • 2.4.7 Interactive Fillers
  • 2.4.8 Summary of Polymeric Systems
  • 2.5 Colloidal Gels
  • 2.5.1 Interactions Between Colloidal Particles
  • 2.5.2 London - van der Waals' Interactions
  • 2.5.3 Depletion Interactions
  • 2.5.4 Electrostatic Repulsion
  • 2.5.5 Steric Repulsion
  • 2.5.6 Electrosteric Interactions
  • 2.6 References
  • Chapter 3: Viscosity: Low Deborah Number Measurements
  • 3.1 Initial Considerations
  • 3.2 Viscometric Measurement
  • 3.2.1 The Cone and Plate
  • 3.2.2 The Couette or Concentric Cylinder
  • 3.3 The Molecular Origins on Viscosity
  • 3.3.1 The Flow of Gases
  • 3.3.2 The Flow of Liquids
  • 3.3.3 Density and Phase Changes
  • 3.3.4 Free Volume Model of Liquid Flow
  • 3.3.5 Activation energy Models
  • 3.4 Superfluids
  • 3.5 Macromolecular Fluids
  • 3.5.1 Colloidal Dispersions
  • 3.5.2 Dilute Dispersions of Spheres
  • 3.5.3 Concentrated Dispersions of Spheres
  • 3.5.4 Shear Thickening Behaviour in Dense Suspensions
  • 3.5.5 Charge Stabilised Dispersions
  • 3.5.6 Dilute Polymer Solutions
  • 3.5.7 Surfactant Solutions
  • 3.6 References
  • Chapter 4: Linear Viscoelasticity I Phenomenological Approach
  • 4.1 Viscoelasticity
  • 4.2 Length and Timescales
  • 4.3 Mechanical Spectroscopy
  • 4.4 Linear Viscoelasticity
  • 4.4.1 Mechanical Analogues
  • 4.4.2 Relaxation Derived as an Analogue to 1 st Order Chemical Kinetics
  • 4.4.1 Oscillation Response
  • 4.4.2 Multiple Processes
  • 4.4.3 A Spectral Approach To Linear Viscoelastic Theory
  • 4.5 Linear Viscoelastic Experiments
  • 4.4.1 Relaxation
  • 4.4.2 Stress Growth
  • 4.4.3 Antthixotropic Response
  • 4.4.4 Creep and Recovery
  • 4.4.5 Strain Oscillation
  • 4.4.6 Stress Oscillation
  • 4.6 Interrelationships Between the Measurements and the Spectra
  • 4.6.1 The Relationship Between Compliance and Modulus
  • 4.6.1 Retardation and Relaxation Spectrum
  • 4.6.2 The Relaxation Function and the Storage and Loss Moduli
  • 4.6.3 Creep and Relaxation Interrelations
  • 4.7 Applications to the Models
  • 4.8 Microstructural Influences on the Kernel
  • 4.8.1 The Extended Exponential
  • 4.8.2 Power law or the Gel Equation
  • 4.8.3 Exact Inversions from the Relaxation or Retardation Spectrum
  • 4.9 Non-shearing Fields and Extension
  • 4.10 References
  • Chapter 5: Linear Viscoelasticity II. Microstructural Approach
  • 5.1 Intermediate Deborah Numbers
  • 5.2 Hard Spheres and Atomic Fluids
  • 5.3 Quasi-hard Spheres
  • 5.3.1 Quasi-hard Sphere Phase Diagrams
  • 5.3.2 Quasi-hard Sphere Viscoelasticity and Viscosity
  • 5.4 Weakly Attractive Systems
  • 5.5 Charge Repulsion Systems
  • 5.6 Simple Homopolymer systems
  • 5.6.1 Phase Behaviour and the Chain Overlap in Good Solvents
  • 5.6.2 Dilute Solution Polymers
  • 5.6.3 Undiluted and Concentrated Non-entangled Polymers
  • 5.6.4 Entanglement coupling
  • 5.6.5 Reptation and Linear Viscoelasticity
  • 5.7 Polymer Network Structure
  • 5.7.1 The Formation of Gels
  • 5.7.2 Chemical Networks
  • 5.7.3 Physical Networks
  • 5.8 References
  • Chapter 6: Non-Linear Responses
  • 6.1 Introduction
  • 6.2 The Phenomenological Approach
  • 6.2.1 Flow Curve4s
  • Definitions and Equations
  • 6.2.2 Time Dependence in Flow and The Boltzmann Superposition Principle
  • 6.2.3 Yield Stress Sedimentation and Linearity
  • 6.3 The Microstructural Approach - Particles
  • 6.2.1 Flow in Hard Sphere Systems
  • 6.2.2 The Addition of a Surface Layer
  • 6.2.3 Aggregation and Dispersion in Shear
  • 6.2.4 Weakly Flocculated Dispersions
  • 6.2.5 Strongly Aggregated and Coagulated Systems
  • 6.2.6 Long Range Repulsive Systems
  • 6.2.7 Rod-like Particles
  • 6.4 The Microstructural Approach - Polymers
  • 6.4.1 The Role of Entanglements in Non-linear Viscoelasticity
  • 6.4.2 Entanglements of Solution Homopolymers
  • 6.4.3 The Reptation Approach
  • 6.5 Novel Applications
  • 6.5.1 Extension and Complex Flows
  • 6.5.2 Uniaxial Compression Modulus
  • 6.5.3 Deformable Particles
  • 6.5 References
  • Subject Index
  • .