Rheology for Chemists An Introduction /

Main Author: Goodwin, J W, Dr.
Other Authors: Hughes, R W, Dr.
Format: Book
Language:English
Published: Cambridge, Royal Society of Chemistry, 2008.
Edition:2nd New ed.
Subjects:
Online Access:http://dx.doi.org/10.1039/9781847558046
LEADER 05514nam a2200253 a 4500
001 1873393
005 20171111234655.0
008 090811e200801uuxxka fs|||||||0|0 eng|d
020 |a 9781847558046:  |c £45.94 
020 |a 1847558046:  |c £45.94 
040 |a UK-WkNB  |b eng 
100 1 |a Goodwin, J W,  |c Dr. 
245 1 0 |a Rheology for Chemists  |b An Introduction /  |c J W Goodwin, R W Hughes. 
250 |a 2nd New ed. 
260 |a Cambridge,  |b Royal Society of Chemistry,  |c 2008. 
300 |a 276 p. :  |b 130 b&w, ill. 
500 |a Ebook. 
505 0 |a Contents: Chapter 1: Introduction-- 1.1 Definitions-- 1.1.1 Stress and Strain-- 1.1.2 Rate of Strain and Flow-- 1.2 Simple Constitutive Equations-- 1.2.1 Linear and Non-linear Behaviour-- 1.2.2 Using Constitutive Equations-- 1.3 Dimensionless Groups-- 1.3.1 The Deborah Number-- 1.3.2 The Peclet Number-- 1.3.3 The Reduced Stress-- 1.3.4 The Taylor Number, NTa-- 1.3.5 The Reynolds Number, NRe-- 1.4 Macromolecular and Colloidal Systems-- 1.5 References-- Chapter 2: Elasticity: High Deborah Number Measurements-- 2.1 Introduction-- 2.2 The Liquid-Solid Transition-- 2.2.1 Bulk Elasticity-- 2.2.2 Wave Propagation-- 2.3 Crystalline Solids At Large Strains-- 2.3.1 Lattice Defects-- 2.4 Macromolecular Solids-- 2.4.1 Polymers - An Introduction-- 2.4.2 Chain Conformation-- 2.4.3 Polymer Crystallinity-- 2.4.4 Crosslinked Elastomers-- 2.4.5 Self-associating Polymers-- 2.4.6 Non-interactive Fillers-- 2.4.7 Interactive Fillers-- 2.4.8 Summary of Polymeric Systems-- 2.5 Colloidal Gels-- 2.5.1 Interactions Between Colloidal Particles-- 2.5.2 London - van der Waals' Interactions-- 2.5.3 Depletion Interactions-- 2.5.4 Electrostatic Repulsion-- 2.5.5 Steric Repulsion-- 2.5.6 Electrosteric Interactions-- 2.6 References-- Chapter 3: Viscosity: Low Deborah Number Measurements-- 3.1 Initial Considerations-- 3.2 Viscometric Measurement-- 3.2.1 The Cone and Plate-- 3.2.2 The Couette or Concentric Cylinder-- 3.3 The Molecular Origins on Viscosity-- 3.3.1 The Flow of Gases-- 3.3.2 The Flow of Liquids-- 3.3.3 Density and Phase Changes-- 3.3.4 Free Volume Model of Liquid Flow-- 3.3.5 Activation energy Models-- 3.4 Superfluids-- 3.5 Macromolecular Fluids-- 3.5.1 Colloidal Dispersions-- 3.5.2 Dilute Dispersions of Spheres-- 3.5.3 Concentrated Dispersions of Spheres-- 3.5.4 Shear Thickening Behaviour in Dense Suspensions-- 3.5.5 Charge Stabilised Dispersions-- 3.5.6 Dilute Polymer Solutions-- 3.5.7 Surfactant Solutions-- 3.6 References-- Chapter 4: Linear Viscoelasticity I Phenomenological Approach-- 4.1 Viscoelasticity-- 4.2 Length and Timescales-- 4.3 Mechanical Spectroscopy-- 4.4 Linear Viscoelasticity-- 4.4.1 Mechanical Analogues-- 4.4.2 Relaxation Derived as an Analogue to 1 st Order Chemical Kinetics-- 4.4.1 Oscillation Response-- 4.4.2 Multiple Processes-- 4.4.3 A Spectral Approach To Linear Viscoelastic Theory-- 4.5 Linear Viscoelastic Experiments-- 4.4.1 Relaxation-- 4.4.2 Stress Growth-- 4.4.3 Antthixotropic Response-- 4.4.4 Creep and Recovery-- 4.4.5 Strain Oscillation-- 4.4.6 Stress Oscillation-- 4.6 Interrelationships Between the Measurements and the Spectra-- 4.6.1 The Relationship Between Compliance and Modulus-- 4.6.1 Retardation and Relaxation Spectrum-- 4.6.2 The Relaxation Function and the Storage and Loss Moduli-- 4.6.3 Creep and Relaxation Interrelations-- 4.7 Applications to the Models-- 4.8 Microstructural Influences on the Kernel-- 4.8.1 The Extended Exponential-- 4.8.2 Power law or the Gel Equation-- 4.8.3 Exact Inversions from the Relaxation or Retardation Spectrum-- 4.9 Non-shearing Fields and Extension-- 4.10 References-- Chapter 5: Linear Viscoelasticity II. Microstructural Approach-- 5.1 Intermediate Deborah Numbers-- 5.2 Hard Spheres and Atomic Fluids-- 5.3 Quasi-hard Spheres-- 5.3.1 Quasi-hard Sphere Phase Diagrams-- 5.3.2 Quasi-hard Sphere Viscoelasticity and Viscosity-- 5.4 Weakly Attractive Systems-- 5.5 Charge Repulsion Systems-- 5.6 Simple Homopolymer systems-- 5.6.1 Phase Behaviour and the Chain Overlap in Good Solvents-- 5.6.2 Dilute Solution Polymers-- 5.6.3 Undiluted and Concentrated Non-entangled Polymers-- 5.6.4 Entanglement coupling-- 5.6.5 Reptation and Linear Viscoelasticity-- 5.7 Polymer Network Structure-- 5.7.1 The Formation of Gels-- 5.7.2 Chemical Networks-- 5.7.3 Physical Networks-- 5.8 References-- Chapter 6: Non-Linear Responses-- 6.1 Introduction-- 6.2 The Phenomenological Approach-- 6.2.1 Flow Curve4s-- Definitions and Equations-- 6.2.2 Time Dependence in Flow and The Boltzmann Superposition Principle-- 6.2.3 Yield Stress Sedimentation and Linearity-- 6.3 The Microstructural Approach - Particles-- 6.2.1 Flow in Hard Sphere Systems-- 6.2.2 The Addition of a Surface Layer-- 6.2.3 Aggregation and Dispersion in Shear-- 6.2.4 Weakly Flocculated Dispersions-- 6.2.5 Strongly Aggregated and Coagulated Systems-- 6.2.6 Long Range Repulsive Systems-- 6.2.7 Rod-like Particles-- 6.4 The Microstructural Approach - Polymers-- 6.4.1 The Role of Entanglements in Non-linear Viscoelasticity-- 6.4.2 Entanglements of Solution Homopolymers-- 6.4.3 The Reptation Approach-- 6.5 Novel Applications-- 6.5.1 Extension and Complex Flows-- 6.5.2 Uniaxial Compression Modulus-- 6.5.3 Deformable Particles-- 6.5 References-- Subject Index--. 
650 7 |a Physical chemistry. 
650 7 |a States of matter. 
650 7 |a Polymer chemistry. 
700 1 |a Hughes, R W,  |c Dr. 
856 4 |u http://dx.doi.org/10.1039/9781847558046 
952 |a CY-NiOUC  |b 5a0461cb6c5ad14ac1ee5e98  |c 998a  |d 945l  |e -  |t 1  |x m  |z Books