|
|
|
|
LEADER |
01269nam a2200217 a 4500 |
001 |
553786 |
005 |
20171111230018.0 |
008 |
080721s2009 nyuab b 001 0 eng |
020 |
|
|
|a 9780470180945 (hbk.)
|
040 |
|
|
|a DLC
|
050 |
|
|
|a TK5102.9
|b .C3187 2009
|
082 |
|
|
|2 22
|a 621.382/2
|
100 |
1 |
|
|a Candy, J. V.
|
245 |
1 |
|
|a Bayesian signal processing :
|b classical, modern, and particle filtering methods /
|c James V. Candy.
|
260 |
1 |
|
|a Hoboken, N.J. :
|b Wiley :
|c c2009.
|b IEEE,
|
300 |
1 |
|
|a xxiii, 445 p. :
|b ill., map ;
|c 25 cm.
|
504 |
1 |
|
|a Includes bibliographical references and index.
|
505 |
1 |
|
|a 1. Introduction -- 2. Bayesian estimation -- 3. Simulation-based Bayesian methods -- 4. State-space models for Bayesian processing -- 5. Classical Bayesian state-space processors -- 6. Modern Bayesian state-space processors -- 7. Particle-based Bayesian state-space processors -- 8. Joint Bayesian state/parametric processors -- 9. Discrete hidden Markov model Bayesian processors -- 10. Bayesian processors for physics-based applications -- Appendix A. Probability & statistics overview.
|
650 |
1 |
|
|a Signal processing
|x Mathematics
|
650 |
1 |
|
|a Bayesian statistical decision theory
|
952 |
|
|
|a GrThPMO
|b 59b016316c5ad17d7e5ada8a
|c 952a
|d 9528
|e TK5102.9.C3187 2009
|t 7
|x m
|z Books
|