Fundamentals of speech recognition/

Main Author: Rabiner, Lawrence R., 1943-
Corporate Author: Prentice-Hall PTR
Other Authors: Juang, B. H.
Format: Book
Language:English
Published: Englewood Cliffs, N.J.: PTR Prentice Hall, c1993
Series:Prentice Hall signal processing series
Subjects:
LEADER 03435nam a2200385 a 4500
001 2050614
005 20171112000053.0
008 920903s1993 gr r 000 0 eng d
020 |a 0130151572 
040 |a GR-ChTUC  |b gre 
050 0 |a TK7895.S65  |b R33 1993  |a TK7895.S65 
082 0 |2 20  |a 006.4/54  |b R33 1993 
082 0 |2 21η  |a 006.454 
082 0 0 |2 20  |a 006.4/54 
100 1 0 |a Rabiner, Lawrence R.,  |d 1943- 
245 1 0 |a Fundamentals of speech recognition/  |c Lawrence Rabiner, Biing-HwangJuang 
260 1 0 |a Englewood Cliffs, N.J.:  |b PTR Prentice Hall,  |c c1993 
300 1 0 |a xxvii, 507 p. :  |b ill. ;  |c 25 cm. 
490 0 0 |a Prentice Hall signal processing series 
504 0 0 |a Includes bibliographical references and index 
504 1 0 |a Περιέχει βιβλιογραφικές παραπομπές και ευρετήριο 
504 2 0 |a Includes bibliographical references and index. 
505 1 0 |a 1. Fundamentals of Speech Recognition. 1.2. The Paradigm for Speech Recognition. 1.3. Outline. 1.4. A Brief History of Speech-Recognition Research -- 2. The Speech Signal: Production, Perception, and Acoustic-Phonetic Characterization. 2.2. The Speech-Production Process. 2.3. Representing Speech in the Time and Frequency Domains. 2.4. Speech Sounds and Features. 2.5. Approaches to Automatic Speech Recognition by Machine -- 3. Signal Processing and Analysis Methods for Speech Recognition. 3.2. The Bank-of-Filters Front-End Processor. 3.3 Linear Predictive Coding Model for Speech Recognition. 3.4. VectorQuantization. 3.5. Auditory-Based Spectral Analysis Models -- 4.Pattern-Comparison Techniques. 4.2. Speech (Endpoint) Detection. 4.3.Distortion Measures - Mathematical Considerations. 4.4. Distortion Measures - Perceptual Considerations. 4.5. Spectral-Distortion Measures. 4.6. Incorporation of Spectral Dynamic Features into the Distortion Measure 4.7. Time Alignment and Normalization. 
505 2 0 |a 1. Fundamentals of Speech Recognition. 1.2. The Paradigm for SpeechRecognition. 1.3. Outline. 1.4. A Brief History of Speech-RecognitionResearch -- 2. The Speech Signal: Production, Perception, andAcoustic-Phonetic Characterization. 2.2. The Speech-Production Process.2.3. Representing Speech in the Time and Frequency Domains. 2.4. SpeechSounds and Features. 2.5. Approaches to Automatic Speech Recognition byMachine -- 3. Signal Processing and Analysis Methods for SpeechRecognition. 3.2. The Bank-of-Filters Front-End Processor. 3.3. LinearPredictive Coding Model for Speech Recognition. 3.4. VectorQuantization. 3.5. Auditory-Based Spectral Analysis Models -- 4.Pattern-Comparison Techniques. 4.2. Speech (Endpoint) Detection. 4.3.Distortion Measures - Mathematical Considerations. 4.4. DistortionMeasures - Perceptual Considerations. 4.5. Spectral-DistortionMeasures. 4.6. Incorporation of Spectral Dynamic Features into theDistortion Measure. 4.7. Time Alignment and Normalization. 
650 1 0 |a Automatic speech recognition 
650 1 0 |a Speech processing systems 
650 1 0 |a Συστήματα επεξεργασίας ομιλίας 
650 1 0 |a Automatic speech recognition 
650 1 0 |a Speech processing systems 
700 1 0 |a Juang, B. H. 
700 1 0 |a Juang, B. H. 
700 1 0 |a Juang, B. H. 
710 1 0 |a Prentice-Hall PTR 
952 |a GR-AtPPV  |b 59ccd0546c5ad13446099a17  |c 998a  |d 945l  |e 006.454 RAB  |t 1  |x m  |z Books 
952 |a GR-AtNTU  |b 59cc27596c5ad13446f99459  |c 998a  |d 945l  |e 006.454 RAB  |t 2  |x m  |z Books