|
|
|
|
LEADER |
01801nam a2200205 a 4500 |
001 |
2041928 |
005 |
20171112000041.0 |
008 |
960718s1993 cy da er 000 u eng d |
020 |
|
|
|a 0792393023
|q hbk.
|
040 |
|
|
|a CY
|b University of Cyprus
|e AACR-2
|
050 |
|
|
|a HB201.Q54 1993
|
100 |
1 |
|
|a Quiggin, John
|
245 |
1 |
0 |
|a Generalized expected utility theory:
|b the rank-dependent model/
|c John Quiggin
|
260 |
1 |
0 |
|a Boston:
|b Kluwer Academic Publishers,
|c c1993
|
300 |
1 |
0 |
|a xii, 208 p. :
|b ill. ;
|c 24 cm.
|
500 |
1 |
0 |
|a Includes bibliographical references (p. 195-202) and index.
|
500 |
1 |
0 |
|a Contents: Pt. 3. Further Properties of the Model. Ch. 9. Some NormativeProperties of RDEU. 9.1. Diversification. 9.2. Quasiconcavity,Quasiconvexity and Betweenness. 9.3. Dynamic Consistency. 9.4. RDEU andInformation. Ch. 10. RDEU and Experimental Evidence. 10.1. The Experimental Approach. 10.2. The Allais Problem. 10.3. The Common RatioEffect. 10.4. Ambiguity and Reduction of Compound Lotteries. 10.5.Preference Reversal. 10.6. The Recent Empirical Evidence on RDEU. 10.7.Estimating a Functional Form. Ch. 11. Axiomatic Approaches to RDEU.11.1. The Probability Weighting Approach. 11.2. The Dual Approach.11.3. Ordinal Independence and Measure Representation. 11.4. Trade-Off Consistency. 11.5. The Reduction of Compound Lotteries Axiom. 11.6.Ordinally Independent Generalizations. 11.7. Cumulative ProspectTheory. 11.8. The Space of Outcomes -- Appendix - Notes on the OriginalAxiomatization of RDEU -- Pt. 4. Generalized Expected Utility Theory.Ch. 12. Generalized Smooth Utility and RDEU. 12.1.
|
650 |
1 |
0 |
|a Utility theory
|x Mathematical models
|
952 |
|
|
|a GrThPMO
|b 59afce886c5ad17d7e599b41
|c 952a
|d 9528
|e HB201.Q54 1993
|t 7
|x m
|z Books
|
952 |
|
|
|a CY-NiOUC
|b 5a0435426c5ad14ac1e9412a
|c 998a
|d 945l
|e HB201.Q54 1993
|t 1
|x m
|z Books
|