|
|
|
|
LEADER |
02897nam a2200541 a 4500 |
001 |
2025845 |
005 |
20171112000019.0 |
008 |
031009s2001 mau r 000 0 eng d |
020 |
|
|
|a 026202506X
|q (hc. : alk. paper)
|
040 |
|
|
|a GR
|b Πολυτεχνείο Κρήτης
|
050 |
|
|
|a QH506
|b .B35 2001
|
082 |
|
0 |
|a 572.8
|
082 |
|
0 |
|2 21
|a 572.801 13
|
082 |
|
0 |
|2 22η εκδ.
|a 572.8
|
082 |
|
0 |
|2 22
|a 572.80113 BAL
|
100 |
1 |
0 |
|a Baldi, Pierre
|
245 |
1 |
0 |
|a Bioinformatics :
|b the machine learning approach /
|c Pierre Baldi, S²ren Brunak
|
250 |
1 |
0 |
|a 2nd ed
|
260 |
1 |
0 |
|a Cambridge, Mass. :
|b MIT Press,
|c c2001
|
300 |
1 |
0 |
|a xxi, 452 p. :
|b ill. ;
|c 24 cm
|
490 |
0 |
0 |
|a Adaptive computation and machine learning
|
500 |
0 |
0 |
|a "A Bradford book"
|
500 |
1 |
0 |
|a ΤΠΛ
|
504 |
0 |
0 |
|a Includes bibliographical references (p. 409-445)
|
504 |
1 |
0 |
|a Περιέχει βιβλιογραφία και ευρετήριο
|
504 |
1 |
0 |
|a Includes bibliographical references and index.
|
504 |
1 |
0 |
|a Includes bibliographical reference and index.
|
505 |
1 |
0 |
|a Introduction -- Machine-learning foundations : the probabilistic framework -- Probabilistic modeling and inference : examples -- Machine learning algorithms -- Neural networks : the theory -- Neural networks : applications -- Hidden Markov models: the theory -- Hidden Markov models: applications -- Probabilistic graphical models in bioinformatics -- Probabilistic models of evolution : phylogenetic trees -- Stochastic grammars and linguistics -- Microarrays and gene expression -- Internet resources and public databases -- Statistics -- Information theory, entropy, and relative entropy -- Probabilistic graphical models -- HMM technicalities, scaling, periodic architectures, state functions, and dirichlet mixtures -- Gaussian processes, kernel methods and support vector machines -- Symbols and abbreviations
|
650 |
1 |
0 |
|a Bioinformatics
|
650 |
1 |
0 |
|a Molecular biology
|x Computer simulation
|
650 |
1 |
0 |
|a Molecular biology
|x Mathematical models
|
650 |
1 |
0 |
|a Neural networks (Computer science)
|
650 |
1 |
0 |
|a Machine learning
|
650 |
1 |
0 |
|a Markov processes
|
650 |
1 |
0 |
|a Βιοπληροφορική
|
650 |
1 |
0 |
|a Μοριακή βιολογία
|x Μαθηματικά μοντέλα
|
650 |
1 |
0 |
|a Νευρώτικά δίκτυα (Επιστήμη υπολογιστών)
|
650 |
1 |
0 |
|a Μηχανική μάθηση
|
650 |
1 |
0 |
|a MARKOV, ΔΙΑΔΙΚΑΣΙΕΣ ΤΟΥ
|
650 |
1 |
0 |
|a Neural networks(Computer science)
|
700 |
1 |
0 |
|a Brunak, S²ren
|
700 |
1 |
0 |
|a Brunak, Soren
|
700 |
1 |
0 |
|a Brunak, Soren
|
700 |
1 |
0 |
|a Brunak, Soren
|
710 |
1 |
0 |
|a MIT Press
|
952 |
|
|
|a GR-AtNTU
|b 59cc27de6c5ad13446f9a77a
|c 998a
|d 945l
|e 572.80113 BAL
|t 1
|x m
|z Books
|
952 |
|
|
|a GR-KeIUL
|b 59cc28006c5ad13446f9ac82
|c 998a
|d 945l
|e 572.8 BAL
|t 1
|x m
|z Books
|
952 |
|
|
|a GRThAnMak
|b 59cca2c76c5ad13446029ca5
|c 998a
|d 945l
|e 572.8 BAL
|t 1
|x m
|z Books
|