|
|
|
|
LEADER |
01685nam a2200481 a 4500 |
001 |
1982621 |
005 |
20171111235918.0 |
008 |
981016s1999 xu erb 001 0 engxd |
020 |
|
|
|a 0898714257
|q pbk.
|
040 |
|
|
|a GR
|b Uk
|
050 |
|
|
|a QA274.7
|b University of Ioannina
|
080 |
0 |
|
|a 519.217
|
082 |
0 |
0 |
|2 21
|a 519.23
|
082 |
0 |
0 |
|2 21
|a 519.233
|
082 |
0 |
0 |
|2 22
|a 519.23
|
082 |
0 |
0 |
|2 22
|a 519.23 LAT
|
100 |
1 |
0 |
|a Latouche, G.
|q Guy
|
245 |
0 |
0 |
|a Introduction to matrix analytic methods in stochastic modeling
|c G. Latouche, V. Ramaswami
|
260 |
0 |
0 |
|a Philadelphia, Pa.:
|b SIAM
|c c1999
|a Alexandria, Va:
|b ASA,
|
300 |
0 |
0 |
|a xiv, 334 p. :
|b ill. ;
|c 25 cm.
|
490 |
0 |
0 |
|a ASA-SIAM series on statistics and applied probability
|
504 |
0 |
0 |
|a Includes bibliographical references and index.
|
504 |
0 |
0 |
|a Includes bibliographical references and index
|
504 |
0 |
0 |
|a Bibliography: p. 313-324. Includes index.
|
650 |
1 |
0 |
|a Markov processes
|
650 |
1 |
0 |
|a Queuing theory
|
650 |
1 |
0 |
|a Matrices
|
650 |
1 |
0 |
|a Markov processes
|
650 |
1 |
0 |
|a Queuing theory
|
650 |
1 |
7 |
|a Statistics
|
650 |
1 |
7 |
|a Statistical analysis
|
650 |
1 |
7 |
|a Probability
|
650 |
1 |
7 |
|a Algorithms
|
650 |
1 |
7 |
|a Distribution
|
650 |
1 |
7 |
|a Mathematics
|
650 |
1 |
0 |
|a Markov processes
|
650 |
1 |
0 |
|a Queuing theory
|
700 |
1 |
0 |
|a Ramaswami, V.
|
710 |
0 |
0 |
|a Society for Industrial and Applied Mathematics
|
710 |
0 |
0 |
|a American Statistical Association
|
952 |
|
|
|a GR-AtNTU
|b 59cc23a06c5ad13446f905c4
|c 998a
|d 945l
|e 519.23 LAT
|t 1
|x m
|z Books
|
952 |
|
|
|a CY-NiOUC
|b 5a0444156c5ad14ac1ead7b2
|c 998a
|d 945l
|e QA274.7.L38 1999
|t 1
|x m
|z Books
|
952 |
|
|
|a GrAtEKP
|b 59cd1efb6c5ad13446103b4d
|c 998a
|d 945l
|e 519.233 LAT
|t 1
|x m
|z Books
|