|
|
|
|
LEADER |
03300nam a2200373 a 4500 |
001 |
1907720 |
005 |
20171111234745.0 |
008 |
070806s2007 ne a ob 001 0 eng d |
020 |
|
|
|a 9780123725608
|
020 |
|
|
|a 0123725607
|
020 |
|
|
|a 9780080466507
|q (electronic bk.)
|
020 |
|
|
|a 0080466508
|q (electronic bk.)
|
020 |
|
|
|a 9786610728992
|
020 |
|
|
|a 6610728992
|
040 |
|
|
|a OPELS
|b eng
|e pn
|
050 |
|
4 |
|a RC386.6.B7
|b S73 2007eb
|
245 |
0 |
0 |
|a Statistical parametric mapping :
|b the analysis of funtional brain images /
|c edited by Karl Friston, John Ashburner, Stefan Kiebel, Thomas Nichols, William Penny.
|
250 |
|
|
|a First edition.
|
260 |
|
|
|a Amsterdam ;
|b Elsevier/Academic Press,
|c 2007.
|a Boston :
|
300 |
|
|
|a 1 online resource (vii, 647 pages) :
|b illustrations (some color)
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a INTRODUCTION -- A short history of SPM. -- Statistical parametric mapping. -- Modelling brain responses. -- SECTION 1: COMPUTATIONAL ANATOMY -- Rigid-body Registration. -- Nonlinear Registration. -- Segmentation. -- Voxel-based Morphometry. -- SECTION 2: GENERAL LINEAR MODELS -- The General Linear Model. -- Contrasts & Classical Inference. -- Covariance Components. -- Hierarchical models. -- Random Effects Analysis. -- Analysis of variance. -- Convolution models for fMRI. -- Efficient Experimental Design for fMRI. -- Hierarchical models for EEG/MEG. -- SECTION 3: CLASSICAL INFERENCE -- Parametric procedures for imaging. -- Random Field Theory & inference. -- Topological Inference. -- False discovery rate procedures. -- Non-parametric procedures. -- SECTION 4: BAYESIAN INFERENCE -- Empirical Bayes & hierarchical models. -- Posterior probability maps. -- Variational Bayes. -- Spatiotemporal models for fMRI. -- Spatiotemporal models for EEG. -- SECTION 5: BIOPHYSICAL MODELS -- Forward models for fMRI. -- Forward models for EEG and MEG. -- Bayesian inversion of EEG models. -- Bayesian inversion for induced responses. -- Neuronal models of ensemble dynamics. -- Neuronal models of energetics. -- Neuronal models of EEG and MEG. -- Bayesian inversion of dynamic models -- Bayesian model selection & averaging. -- SECTION 6: CONNECTIVITY -- Functional integration. -- Functional Connectivity. -- Effective Connectivity. -- Nonlinear coupling and Kernels. -- Multivariate autoregressive models. -- Dynamic Causal Models for fMRI. -- Dynamic Causal Models for EEG. -- Dynamic Causal Models & Bayesian selection. -- APPENDICES -- Linear models and inference. -- Dynamical systems. -- Expectation maximisation. -- Variational Bayes under the Laplace approximation. -- Kalman Filtering. -- Random Field Theory.
|
650 |
|
0 |
|a Brain mapping
|x Statistical methods.
|
650 |
|
0 |
|a Brain
|x Imaging
|x Statistical methods.
|
650 |
|
2 |
|a Brain Mapping
|x methods.
|
650 |
|
2 |
|a Image Processing, Computer-Assisted
|x methods.
|
650 |
|
2 |
|a Magnetic Resonance Imaging
|x methods.
|
650 |
|
2 |
|a Models, Neurological.
|
650 |
|
2 |
|a Models, Statistical.
|
650 |
|
7 |
|a Eletroencefalografia.
|
650 |
|
7 |
|a Online-Publikation.
|
700 |
1 |
|
|a Nichols, Thomas,
|
856 |
4 |
0 |
|a Penny, William D.,
|u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=187303
|
952 |
|
|
|a CY-NiOUC
|b 5a0466ec6c5ad14ac1eefc95
|c 998a
|d 945l
|e -
|t 1
|x m
|z Books
|