Table of Contents:
  • Cover
  • Contents
  • Preface
  • 1 The Smart Approach 8212; An Introduction to Smart Technologies
  • 1.1 What Constitutes a Smart Technology?
  • 1.2 Application of Smart Technologies
  • 1.2.1 An Interdisciplinary Field
  • 2 Sensing Systems for Smart Structures
  • 2.1 Introduction
  • 2.2 Sensor Requirements in Smart Systems
  • 2.3 Sensor Technologies for Smart Systems
  • 2.3.1 The Options
  • 2.3.2 Using Conventional Sensors
  • 2.3.3 New Technologies 8212; Fibre Optic Sensors
  • 2.3.4 MEMS
  • 2.3.5 Piezoceramics and Piezoelectric Polymers
  • 2.3.6 Film Technologies: Coatings and Threads
  • 2.4 Conclusions
  • 3 Vibration Control Using Smart Structures
  • 3.1 Introduction
  • 3.1.1 The Dynamics of Structures
  • 3.1.2 Modal Analysis of Structures
  • 3.2 Sensors and Actuators
  • 3.3 Active Control of Structures
  • 3.3.1 Modal Control
  • 3.3.2 Adding Damping 8212; Derivative Feedback
  • 3.3.3 Positive Position Feedback
  • 3.3.4 Other Controllers
  • 3.4 Examples of Vibration Control
  • 3.4.1 A Cantilever Beam
  • 3.4.2 A Slewing Beam
  • 3.4.3 A Slewing Frame
  • 3.4.4 Antenna
  • 3.4.5 Plate Example
  • 3.5 Conclusions
  • Bibliography
  • 4 Data Fusion 8212; The Role of Signal Processing for Smart Structures and Systems
  • 4.1 Introduction
  • 4.2 Sensors
  • 4.3 Sensor Fusion
  • 4.4 The JDL Model
  • 4.5 The Boyd Model
  • 4.6 The Waterfall Model
  • 4.7 The Omnibus Model
  • 4.8 The Relevance of Data Fusion for Smart Structures
  • 4.9 Case Study: Fault Detection Based on Lamb Wave Scattering
  • 4.9.1 Lamb Waves
  • 4.9.2 Novelty Detection
  • 4.9.3 Results
  • 4.10 Sensor Optimisation, Validation and Failure-Safety
  • 4.10.1 Optimal Sensor Distributions
  • 4.10.2 Failure-Safe Distributions
  • 4.11 Conclusions
  • Acknowledgements
  • Appendix A The Multi-Layer Perceptron
  • Bibliography
  • 5 Shape Memory Alloys 8212; A Smart Technology?
  • 5.1 Introduction
  • 5.2 Structural Origins of Shape Memory
  • 5.3 One-Way Shape Memory
  • 5.4 Two-Way Memory Effect
  • 5.5 Pseudoelasticity or the Superelastic Effect
  • 5.6 A Brief History of Memory Alloys and their Application
  • 5.7 Why Not Use Bimetals?
  • 5.8 Types of Shape Memory Alloy
  • 5.9 Nickel Titanium Shape Memory Alloys
  • 5.9.1 Background
  • 5.9.2 Mechanical Behaviour
  • 5.9.3 Corrosion Characteristics
  • 5.9.4 Ternary Additions
  • 5.9.5 Summary of Mechanical and Physical Properties
  • 5.10 NiTi Shape Memory Alloys in Smart Applications
  • 5.11 Shape Memory Alloys as Smart Actuators
  • 5.11.1 Political Factors
  • 5.11.2 Economic Forces
  • 5.11.3 Social Forces
  • 5.11.4 Technological Forces
  • 5.12 Shape Memory Alloys and their Fit to Smart Technologies
  • 5.12.1 Shape Memory Alloys 8212; A Smart Material?
  • 5.12.2 Shape Memory Alloys in Smart Structures
  • 5.13 Final Thoughts
  • Bibliography
  • 6 Piezoelectric Materials
  • 6.1 Introduction to Piezoelectricity
  • 6.1.1 Crystallography of Piezoelectricity
  • 6.1.2 The Interaction Between Mechanical and Electrical Systems
  • 6.1.3 Some Piezoelectric Materials
  • 6.2 Applications of the Direct Piezoelectric Effect
  • 6.3 Acoustic Transducers
  • 6.4 Piezoelectric Actuators
  • 6.4.1 Bimorphs and Other Bending Piezo-Actuators
  • 6.4.2 Monolithic Actuators
  • 6.4.3 Stack and Multi-Layer Act.