Principles of radiation interaction in matter and detection /

Main Author: Leroy, Claude, 1947-
Other Authors: Rancoita, P. G.
Format: Book
Language:English
Published: Hackensack, NJ : World Scientific, 2004.
Subjects:
Online Access:http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=167292
LEADER 03640nam a2200313 a 4500
001 1904276
005 20171111234739.0
008 060913s2004 njua ob 001 0 eng d
020 |a 9812703608  |q (electronic bk.) 
020 |a 9789812703606 
040 |a N$T  |b eng  |e pn 
050 4 |a QC787.C6  |b L46 2004eb 
100 1 |a Leroy, Claude,  |d 1947- 
240 1 0 |a Radiation interaction in matter and detection 
245 1 0 |a Principles of radiation interaction in matter and detection /  |c Claude Leroy, Pier-Giorgio Rancoita. 
246 3 0 |a Radiation interaction in matter and detection 
260 |a Hackensack, NJ :  |b World Scientific,  |c 2004. 
300 |a 1 online resource (xv, 698 pages) :  |b illustrations 
504 |a Includes bibliographical references (pages 635-664) and index. 
505 0 |a 1. Introduction. 1.1. Radiation and particle interactions. 1.2. Particles and types of interaction. 1.3. Relativistic kinematics. 1.4. Cross section and differential cross section. 1.5. Detectors and large experimental apparata -- 2. Electromagnetic interaction of radiation in matter. 2.1. Passage of ionizing particles through matter. 2.2. Multiple and extended volume Coulomb interactions. 2.3. Photon Interaction and absorption in matter. 2.4. Electromagnetic cascade in matter -- 3. Nuclear interactions in matter. 3.1. General properties of the nucleus. 3.2. Phenomenology of interactions on nuclei at high energy. 3.3. Hadronic shower development and propagation in matter -- 4. Scintillating media and scintillator detectors. 4.1. Scintillators. 4.2. The Čerenkov detectors. 4.3. Wavelength shifters. 4.4. Transition radiation detectors (TRD). 4.5. Scintillating fibers. 4.6. Detection of the scintillation light. 4.7. Applications in calorimetry. 4.8. Application in time-of-flight (ToF) technique -- 5. Solid state detectors. 5.1. Basic principles of operation. 5.2. Charge collection efficiency and Hecht equation. 5.3. Microstrip detectors -- 6. Ionization chambers. 6.1. Basic principle of operation. 6.2. Recombination effects. 6.3. Example of ionization chamber application: the [symbol]-cell. 6.4. Proportional counters. 6.5. Proportional counters: cylindrical coaxial wire chamber. 6.6. The Geiger-Mueller counter -- 7. Principles of particle energy determination. 7.1. Experimental physics and calorimetry. 7.2. Electromagnetic sampling calorimetry. 7.3. Principles of calorimetry with complex absorbers. 7.4. Energy resolution in sampling electromagnetic calorimetry. 7.5. Homogeneous calorimeters. 7.6. Position measurement. 7.7. Electron hadron separation. 7.8. Hadronic calorimetry. 7.9. Methods to achieve the compensation condition. 7.10. Compensation and hadronic energy resolution. 7.11. Calorimetry at very high energy -- 8. Superheated droplet (bubble) detectors. 8.1. Introduction. 8.2. The superheated droplet (bubble) detectors and their operation. 8.3. Neutron response measurement. 8.4. Alpha-particle response measurement. 8.5. Radon detection. 8.6. Spontaneous nucleation. 8.7. Signal measurement with piezoelectric sensors -- 9. Medical physics applications. 9.1. Single photon emission computed tomography (SPECT). 9.2. Positron emission tomography (PET). 9.3. Magnetic resonance imaging (MRI). 
650 0 |a Detectors. 
650 0 |a Radiation  |x Measurement. 
650 7 |a SCIENCE  |x Physics  |x Nuclear. 
650 7 |a SCIENCE  |x Physics  |x Atomic & Molecular. 
650 7 |a Detectors. 
650 7 |a Radiation  |x Measurement. 
700 1 |a Rancoita, P. G. 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=167292 
952 |a CY-NiOUC  |b 5a04665c6c5ad14ac1eeebb6  |c 998a  |d 945l  |e -  |t 1  |x m  |z Books